CHAPTER-4 PROBLEM SET

1. Write balanced net ionic equations for the reactions that occur in each of the following cases. Identify the spectator ion or ions in each reaction.
(a) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(a q) \rightarrow$
(b) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{K}_{2} \mathrm{SO}_{4}(a q) \rightarrow$
(c) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{KOH}(a q) \rightarrow$
2. Which of the following solutions is the most acidic? (a) 0.2 M LiOH , (b) 0.2 M HI , (c) 1.0 M methyl alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$.
3. Determine the oxidation number for the indicated element in each of the following compounds: (a) Co in LiCoO_{2}, (b) Al in NaAlH_{4}, (c) C in $\mathrm{CH}_{3} \mathrm{OH}$ (methanol), (d) N in GaN , (e) Cl in HClO_{2}, (f) Cr in BaCrO_{4}.
4. Using the activity series (Table 4.5), write balanced chemical equations for the following reactions. If no reaction occurs, write NR. (a) Nickel metal is added to a solution of copper(II) nitrate, (b) a solution of zinc nitrate is added to a solution of magnesium sulfate, (c) hydrochloric acid is added to gold metal, (d) chromium metal is immersed in an aqueous solution of cobalt(II) chloride, (e) hydrogen gas is bubbled through a solution of silver nitrate.
5. A person suffering from hyponatremia has a sodium ion concentration in the blood of 0.118 M and a total blood volume of 4.6 L . What mass of sodium chloride would need to be added to the blood to bring the sodium ion concentration up to 0.138 M , assuming no change in blood volume?
6. Glycerol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$, is a substance used extensively in the manufacture of cosmetics, foodstuffs, antifreeze, and plastics. Glycerol is a water-soluble liquid with a density of $1.2656 \mathrm{~g} / \mathrm{mL}$ at $15^{\circ} \mathrm{C}$. Calculate the molarity of a solution of glycerol made by dissolving 50.000 mL glycerol at $15^{\circ} \mathrm{C}$ in enough water to make 250.00 mL of solution.
7. A $0.5895-\mathrm{g}$ sample of impure magnesium hydroxide is dissolved in 100.0 mL of 0.2050 M HCl solution. The excess acid then needs 19.85 mL of 0.1020 M NaOH for neutralization. Calculate the percentage by mass of magnesium hydroxide in the sample, assuming that it is the only substance reacting with the HCl solution.
8. A $35.0-\mathrm{mL}$ sample of 1.00 M KBr and a $60.0-\mathrm{mL}$ sample of 0.600 M KBr are mixed. The solution is then heated to evaporate water until the total volume is 50.0 mL . How many grams of silver nitrate are required to precipitate out silver bromide in the final solution?
9. Tartaric acid, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$, has two acidic hydrogens. The acid is often present in wines and precipitates from solution as the wine ages. A solution containing an unknown concentration of the acid is titrated with NaOH . It requires 24.65 mL of 0.2500 M NaOH solution to titrate both acidic protons in 50.00 mL of the tartaric acid solution. Write a balanced net ionic equation for the neutralization reaction, and calculate the molarity of the tartaric acid solution.
10. (a) By titration, 15.0 mL of 0.1008 M sodium hydroxide is needed to neutralize a 0.2053 g sample of a weak acid. What is the molar mass of the acid if it is monoprotic? (b) An elemental analysis of the acid indicates that it is composed of $5.89 \% \mathrm{H}, 70.6 \% \mathrm{C}$, and $23.5 \% \mathrm{O}$ by mass. What is its molecular formula?
