## CHEM 103 CHEMISTRY I

## CHAPTER 5

 THERMOCHEMISTRYInst. Dr. Dilek IŞIK TAŞGIN<br>Inter-Curricular Courses Department<br>Çankaya University

## Energy

- Energy is the ability to do work or transfer heat.
- Energy used to cause an object that has mass to move is called work.
- Energy used to cause the temperature of an object to rise is called heat.
- This chapter is about thermodynamics, which is the study of energy transformations, and thermochemistry, which applies the field to chemical reactions, specifically.


## Kinetic Energy

## Kinetic energy is energy an object possesses by virtue of its motion:

$$
E_{k}=\frac{1}{2} m v^{2}
$$



High potential energy,
zero kinetic energy


Decreasing potential energy, increasing kinetic energy

## Potential Energy



- Potential energy is energy an object possesses by virtue of its position or chemical composition.
- The most important form of potential energy in molecules is electrostatic potential energy, $E_{\mathrm{el}}$ :

$$
E_{\mathrm{el}}=\frac{k Q_{1} Q_{2}}{d}
$$

## Units of Energy

- The SI unit of energy is the joule ( $\boldsymbol{J}$ :

$$
1 \mathrm{~J}=1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

- An older, non-SI unit is still in widespread use, the calorie (cal):

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

(Note: this is not the same as the calorie of foods; the food calorie is 1 kcal!)

## Definitions: System and Surroundings



- The system includes the molecules we want to study (here, the hydrogen and oxygen molecules).
- The surroundings are everything else (here, the cylinder and piston).


## Definitions: Work

- Energy used to move an object over some distance is work:
- $w=F \times d$
where $w$ is work, $F$ is the force, and $d$ is the distance over which the force is exerted.



## Heat



- Energy can also be transferred as heat.
- Heat flows from warmer objects to cooler objects.


## Conversion of Energy

- Energy can be converted from one type to another.
- The cyclist has potential energy as she sits on top of the hill.
- As she coasts down the hill, her potential energy is converted to kinetic energy until the bottom, where the energy is converted to kinetic energy.


High potential energy,
zero kinetic energy


Decreasing potential energy,

## First Law of Thermodynamics

- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.


## Internal Energy

The internal energy of a system is the sum of all kinetic and potential energies of all components of the system; we call it $E$.


## Internal Energy

By definition, the change in internal energy, $\Delta E$, is the final energy of the system minus the initial energy of the system:

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}
$$



## Changes in Internal Energy

- If $\Delta E>0, E_{\text {final }}>E_{\text {initial }}$
- Therefore, the system absorbed energy from the surroundings.
- This energy change is called endergonic.



## Changes in Internal Energy

- If $\Delta E<0, E_{\text {final }}<E_{\text {initial }}$
- Therefore, the system released energy to the surroundings.
- This energy change is called exergonic.



## Changes in Internal Energy



- When energy is exchanged between the system and the surroundings, it is exchanged as either heat $(q)$ or work ( $w$ ).
- That is, $\Delta E=q+w$.


## $\Delta E, q, w$, and Their Signs

Table 5.1 Sign Conventions for $q, w$, and $\Delta E$

| For $q$ | + means system gains heat | - means system loses heat |
| :--- | :--- | :--- |
| For $w$ | + means work done on system | - means work done by system |
| For $\Delta E$ | + means net gain of energy by system | - means net loss of energy by system |

## Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is endothermic.

System: reactants + products
Surroundings: solvent,
initially at room temperature

(a) An endothermic reaction

Heat flows from surroundings into system, temperature of surroundings drops, thermometer reads temperature well below room temperature

## Exchange of Heat between System and Surroundings

- When heat is released by the system into the surroundings, the process is exothermic.

System: reactants + products
Surroundings:
air around reactants

(b) An exothermic reaction

```
Heat flows (violently) from system
into surroundings, temperature of
surroundings increases
```


## State Functions

- Usually we have no way of knowing the internal energy of a system; finding that value is simply too complex a problem.
- However, we do know that the internal energy of a system is independent of the path by which the system achieved that state.
- In the system below, the water could have reached room temperature from either direction.



## State Functions

- Therefore, internal energy is a state function.
- It depends only on the present state of the system, not on the path by which the system arrived at that state.
- And so, $\Delta E$ depends only on $E_{\text {intitial }}$ and $E_{\text {final }}$.

cools to water at $25^{\circ} \mathrm{C}$; once this temperature is reached, system has internal energy $E$


```
Ice warms up to water
at }2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ ; once this
temperature is reached,
system has internal
energy }
```


## State Functions



- However, $q$ and $w$ are not state functions.
- Whether the battery is shorted out or is discharged by running the fan, its $\Delta E$ is the same.
- But $q$ and $w$ are different in the two cases.


## Work



Usually in an open container the only work done is by a gas pushing on the surroundings (or by the surroundings pushing on the gas).

## Work

We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston:

$$
w=-P \Delta V
$$



## Enthalpy

- If a process takes place at constant pressure (as the majority of processes we study do) and the only work done is this pressure-volume work, we can account for heat flow during the process by measuring the enthalpy of the system.
- Enthalpy is the internal energy plus the product of pressure and volume:

$$
H=E+P V
$$

## Enthalpy

- When the system changes at constant pressure, the change in enthalpy, $\Delta H$, is

$$
\Delta H=\Delta(E+P V)
$$

- This can be written

$$
\Delta H=\Delta E+P \Delta V
$$

## Enthalpy

- Since $\Delta E=q+w$ and $w=-P \Delta V$, we can substitute these into the enthalpy expression:

$$
\begin{aligned}
& \Delta H=\Delta E+P \Delta V \\
& \Delta H=(q+w)-w \\
& \Delta H=q
\end{aligned}
$$

- So, at constant pressure, the change in enthalpy is the heat gained or lost.


## Endothermic and Exothermic

Constant pressure
maintained in system

(b) An exothermic reaction
$\Delta H$ is amount of heat that
flows into or out of system
under constant pressure

- A process is endothermic when $\Delta H$ is positive.
- A process is exothermic when $\Delta H$ is negative.


## Enthalpy of Reaction

The change in enthalpy, $\Delta H$, is the enthalpy of the products minus the enthalpy of the reactants:
$\Delta H=H_{\text {products }}-H_{\text {reactants }}$


## Enthalpy of Reaction

This quantity, $\Delta H$, is called the enthalpy of reaction, or the heat of reaction.


## The Truth about Enthalpy

1. Enthalpy is an extensive property.
2. $\Delta H$ for a reaction in the forward direction is equal in size, but opposite in sign, to $\Delta H$ for the reverse reaction.
3. $\Delta H$ for a reaction depends on the state of the products and the state of the reactants.

## Calorimetry



- Since we cannot know the exact enthalpy of the reactants and products, we measure $\Delta H$ through calorimetry, the measurement of heat flow.
- The instrument used to measure heat flow is called a calorimeter.


## Heat Capacity and Specific Heat

The amount of energy required to raise the temperature of a substance by $1 \mathrm{~K}\left(1^{\circ} \mathrm{C}\right)$ is its heat capacity, usually given for one mole of the substance.

Table 5.2 Specific Heats of Some Substances at 298 K

| Elements |  |  | Compounds |
| :--- | :---: | :--- | :---: |
| Substance | Specific Heat $(\mathrm{J} / \mathrm{g}-\mathrm{K})$ | Substance | Specific Heat $(\mathrm{J} / \mathrm{g}-\mathrm{K})$ |
| $\mathrm{N}_{2}(g)$ | 1.04 | $\mathrm{H}_{2} \mathrm{O}(l)$ | 4.18 |
| $\mathrm{Al}(s)$ | 0.90 | $\mathrm{CH}_{4}(g)$ | 2.20 |
| $\mathrm{Fe}(s)$ | 0.45 | $\mathrm{CO}_{2}(g)$ | 0.84 |
| $\mathrm{Hg}(l)$ | 0.14 | $\mathrm{CaCO}_{3}(s)$ | 0.82 |

## Heat Capacity and Specific Heat

We define specific heat capacity (or simply specific heat) as the amount of energy required to raise the temperature of 1 g of a substance by 1 K (or $1^{\circ} \mathrm{C}$ ).
$1.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(l)$ $T=15.5^{\circ} \mathrm{C}$
$1.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(l)$ $T=14.5^{\circ} \mathrm{C}$

## Heat Capacity and Specific Heat

## Specific heat, then, is

heat transferred
Specific heat $=\frac{}{\text { mass } \times \text { temperature change }}$

$$
C_{s}=\frac{q}{m \times \Delta T}
$$

## Constant Pressure Calorimetry

- By carrying out a reaction in aqueous solution in a simple calorimeter, the heat change for the system can be found by measuring the heat change for the water in the calorimeter.
- The specific heat for water is well known (4.184 J/g•K).
- We can calculate $\Delta H$ for the reaction with this equation:

$q=m \times \mathrm{C}_{s} \times \Delta T$


## Bomb Calorimetry

- Reactions can be carried out in a sealed "bomb" such as this one.
- The heat absorbed (or released) by the water is a very good approximation of the enthalpy change for the reaction.
- $q_{\mathrm{rxn}}=-\mathrm{C}_{\mathrm{cal}} \times \Delta \mathrm{T}$



## Bomb Calorimetry

- Because the volume in the bomb calorimeter is constant, what is measured is really the change in internal energy, $\Delta E$, not $\Delta H$.
- For most reactions, the difference is very small.



## Hess's Law

- $\Delta H$ is well known for many reactions, and it is inconvenient to measure $\Delta H$ for every reaction in which we are interested.
- However, we can estimate $\Delta H$ using published $\Delta H$ values and the properties of enthalpy.


## Hess's Law

- Hess's law: If a reaction is carried out in a series of steps, $\Delta H$ for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps.
- Because $\Delta H$ is a state function, the total enthalpy change depends only on the initial state (reactants) and the final state (products) of the reaction.


## Enthalpies of Formation

An enthalpy of formation, $\Delta H_{f}$, is defined as the enthalpy change for the reaction in which a compound is made from its constituent elements in their elemental forms.

## Standard Enthalpies of Formation

## Standard enthalpies of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$, are measured under standard conditions ( $25^{\circ} \mathrm{C}$ and 1.00 atm pressure).

Table 5.3 Standard Enthalpies of Formation, $\Delta H_{f}^{\rho}$, at 298 K

| Substance | Formula | $\Delta \mathrm{H}_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ | Substance | Formula | $\Delta \mathrm{H}_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :--- | :---: | :--- | :--- | :---: |
| Acetylene | $\mathrm{C}_{2} \mathrm{H}_{2}(g)$ | 226.7 | Hydrogen chloride | $\mathrm{HCl}(g)$ | -92.30 |
| Ammonia | $\mathrm{NH}_{3}(g)$ | -46.19 | Hydrogen fluoride | $\mathrm{HF}(g)$ | -268.60 |
| Benzene | $\mathrm{C}_{6} \mathrm{H}_{6}(l)$ | 49.0 | Hydrogen iodide | $\mathrm{HI}(g)$ | 25.9 |
| Calcium carbonate | $\mathrm{CaCO}_{3}(s)$ | -1207.1 | Methane | $\mathrm{CH}_{4}(g)$ | -74.80 |
| Calcium oxide | $\mathrm{CaO}(s)$ | -635.5 | Methanol | $\mathrm{CH}_{3} \mathrm{OH}(l)$ | -238.6 |
| Carbon dioxide | $\mathrm{CO}_{2}(g)$ | -393.5 | Propane | $\mathrm{C}_{3} \mathrm{H}_{8}(g)$ | -103.85 |
| Carbon monoxide | $\mathrm{CO}(g)$ | -110.5 | Silver chloride | $\mathrm{AgCl}^{2}(s)$ | -127.0 |
| Diamond | $\mathrm{C}(s)$ | 1.88 | Sodium bicarbonate | $\mathrm{NaHCO}_{3}(s)$ | -947.7 |
| Ethane | $\mathrm{C}_{2} \mathrm{H}_{6}(g)$ | -84.68 | Sodium carbonate | $\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$ | -1130.9 |
| Ethanol | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ | -277.7 | Sodium chloride | $\mathrm{NaCl}(s)^{-410.9}$ |  |
| Ethylene | $\mathrm{C}_{2} \mathrm{H}_{4}(g)$ | 52.30 | Sucrose | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)$ | -2221 |
| Glucose | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$ | -1273 | Water | $\mathrm{H}_{2} \mathrm{O}(l)$ | -285.8 |
| Hydrogen bromide | $\mathrm{HBr}^{(g)}$ | -36.23 | Water vapor | $\mathrm{H}_{2} \mathrm{O}(g)$ | -241.8 |

## Calculation of $\Delta H$

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \\
& \mathrm{H}_{2} \mathrm{O}(\Lambda)
\end{aligned}
$$

- Imagine this as occurring in three steps:

1) Decomposition of propane to the elements:
$\mathrm{C}_{3} \mathrm{H}_{8}(g) \longrightarrow 3 \mathrm{C}_{\text {(graphite) }}+4 \mathrm{H}_{2}(g)$


## Calculation of $\Delta H$

## $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4$ $\mathrm{H}_{2} \mathrm{O}($ ( )

- Imagine this as occurring in three steps:

2) Formation of $\mathrm{CO}_{2}$ :
$3 \mathrm{C}_{\text {(graphite) }}+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})$


## Calculation of $\Delta H$

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4$ $\mathrm{H}_{2} \mathrm{O}($ ( )

- Imagine this as occurring in three steps:

3) Formation of $\mathrm{H}_{2} \mathrm{O}$ :
$4 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$


## Calculation of $\Delta H$

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4$ $\mathrm{H}_{2} \mathrm{O}($ ( $)$

- So, all steps look like this:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(g) \longrightarrow 3 \mathrm{C}_{\text {(graphite) }}+4 \mathrm{H}_{2}(g) \\
& 3 \mathrm{C}_{\text {(graphite) }}+3 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g) \\
& 4 \mathrm{H}_{2}(g)+2 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$



## Calculation of $\Delta H$

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4$ $\mathrm{H}_{2} \mathrm{O}($ ( )

- The sum of these equations is the overall equation!

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(g) \longrightarrow 3 \mathrm{C}_{\text {(graphite) }}+4 \mathrm{H}_{2}(g) \\
& 3 \mathrm{C}_{\text {(graphite) }}+3 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g) \\
& 4 \mathrm{H}_{2}(g)+2 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{aligned}
$$


$\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}()$

## Calculation of $\Delta H$

We can use Hess's law in this way:
$\Delta H=\Sigma n \Delta H_{f, \text { products }}-\Sigma m \Delta H_{f}^{\circ}$,reactants
where $n$ and $m$ are the stoichiometric coefficients.

$$
\begin{aligned}
& \text { Calculation of } \Delta H \text { using Values from the } \\
& \text { Standard Enthalpy Table } \\
& \begin{array}{l}
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}
\end{array} \mathrm{tH} \begin{array}{l}
\Delta \mathrm{H}=[3(-393.5 \mathrm{~kJ})+4(-285.8 \mathrm{~kJ})]-[1(-103.85 \mathrm{~kJ})+5(0 \mathrm{kJJ})] \\
=[(-1180.5 \mathrm{~kJ})+(-1143.2 \mathrm{~kJ})]-[(-103.85 \mathrm{~kJ})+(0 \mathrm{kJJ})] \\
=(-2323.7 \mathrm{~kJ})-(-103.85 \mathrm{~kJ})=-2219.9 \mathrm{~kJ}
\end{array}
\end{aligned}
$$



